colorFabb XT
The first I tried is more colorFabb XT, but this time in the newly released 1.75mm size. colorFabb XT is a transparent amorphous copolyester derived from renewable resources. It can be printed on a non-heated build plate (glass or painters tape) at temperatures of between about 210C and 240C. It is quite transparent at single layers. Toughness, elongation to break, and resistance to warp are all very good. It also has a higher glass transition temperature than PLA at 75C, so will fare better when exposed to some heat. AND, as I've discovered, it can be vapor polished and solvent welded(although the effect is not quite as extreme as ABS). The bridging ability of this material is also excellent. I do have this material available for sale in the webstore in both 1.75mm and 2.85mm (3mm). Here are some pics of prints I ran this weekend.Twisted Nautilus Gear Vase 01 (sphynx) / CC BY-SA 3.0
Printed on a Makerbot Replicator 1 with chunky 300 micron layers. 1 layer thick.
[gallery ids="2420,2421,2422"]
Twisted Heart Vase at 200 micron layers on a robo3D. 1 layer thick.
Twisted Heart Vase (Gyrobot) / CC BY-SA 3.0
[gallery ids="2424,2425,2426"]
I also ran a quick Mr Jaws (attribution below) on a Replicator 2X just to see if the XT would run. It ran well. No issues
ProtoPlant Chopped Carbon Fiber filled PLA
EDIT: As of 5/20/14, we will be an official reseller for this material. You can find it here. The next material I tried was a carbon fiber filled PLA that is being offered as part of a kickstarter campaign. The ProtoPlan guys are doing some cool things. I like the mechanical testing results that they are showing and hope more filament companies pick up on that. It would be nice to see them show different variations in their tests. I tried experimenting with this material a little, so forgive me (and the material) if the prints are a little rough. Several backers have already tried out samples, so I wanted to try some things to push it a little. First experiment is 'bridging a bridge'. Mike Kelly on the Robo3D forum suggested this to me. The bridge structure is good for demonstrating the stiffness of the material and it's bridging abilities.Modified Parker Style Bridge Truss (Zax) / CC BY-SA 3.0
Printed on a Makerbot Replicator 1 with no cooling fan. 195C. 300 micron layers. 2 shells.
Yeah, there was some stringing, but I was pretty happy with the bridging given lack of a cooling fan. The printed bridge is very stiff as expected.
[gallery ids="2428,2429"]
I also tried a few little cosmetic test prints. Unfortunately, I had a little filament snag on the skull, but posting it anyways. Woooo!
Celtic Skull Glowing Eyes Charm (Printed_Solid) / CC BY-SA 3.0
100 micron resolution on a Replicator 1.
Mr. Jaws (Mahoney) / CC BY-SA 3.0
I tried out Mr Jaws on a Makerbot Replicator 2X I have access to. The exciting thing for me about this print is that it succeeded. When I've tried PLA on this machine before, it has plugged right away. I think the stiffness of the filament helps overcome the plug.
colorFabb Woodfill
I have to admit, that of the four materials I tried, this one was my favorite. colorFabb has just launched a new wood filled PLA. I wasn't too enthusiastic initially, but I am absolutely a convert. The shop smells like wood when it is printing. The wood grains hide the printing lines. I did have some clogging to deal with, but the results were well worth it. It's worth noting that colorFabb hadn't tried this material at 100 micron and (of course) I jumped right in. I'm guessing that pushing it on layer height had something to do with the clogs. UPDATE: Since I performed this evaluation, colorFabb has posted some printing guidance on their site. My clogs were likely due to printing at too low of a layer height AND leaving the material in the hot end for too long. Since this post, I have started pushing a little PLA or Nylon through the hot end after the print to ensure no woodfill is left in it when not printing and have had much better luck. Check out their advice here. Here is another skull also on the Replicator 1.
